首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   588篇
  免费   77篇
  国内免费   303篇
  2024年   1篇
  2023年   33篇
  2022年   31篇
  2021年   24篇
  2020年   61篇
  2019年   59篇
  2018年   47篇
  2017年   36篇
  2016年   35篇
  2015年   35篇
  2014年   34篇
  2013年   35篇
  2012年   34篇
  2011年   35篇
  2010年   38篇
  2009年   37篇
  2008年   30篇
  2007年   55篇
  2006年   35篇
  2005年   39篇
  2004年   31篇
  2003年   32篇
  2002年   19篇
  2001年   28篇
  2000年   20篇
  1999年   25篇
  1998年   15篇
  1997年   9篇
  1996年   15篇
  1995年   9篇
  1994年   9篇
  1993年   9篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1950年   1篇
排序方式: 共有968条查询结果,搜索用时 29 毫秒
101.
The semiaquatic weed Mimosa pigra has negative impacts on biodiversity, fishing, crop and livestock production, and tourism in most places where it has been introduced, established and proliferated. Many of the ecological impacts are well known, but its impacts on rural livelihoods are less well documented, especially in Africa. We mapped the distribution of M. pigra in eastern and southern Africa, and then compared that with its potential distribution based on an ecoclimatic niche model. Household interviews were conducted to assess the impacts of this weed on local livelihoods. Mimosa pigra was found to be invasive in western Ethiopia, around the shores of Lake Victoria and Lake Tanganyika, and along the Tanzanian coastline, northern Malawi, parts of Mozambique and along the Kafue River and in the Barotse floodplain on the Zambezi River in Zambia. According to respondents living along the Kafue River floodplains in Zambia, it has a negative impact on biodiversity, wildlife, livestock, crop production, fishing and mobility. Dense stands prevented the movement of people and livestock, limiting access to croplands, grazing lands and fishing areas. Fish catches have been reduced and fishing equipment damaged. All respondents agreed that their livelihood options would be considerably enhanced if M. pigra was removed from the landscape. Based on its current and potential impact, we therefore recommend that an integrated management plan be developed and implemented, including the appropriate use of biological control agents to reduce the negative impacts of the weed.  相似文献   
102.
Matthias Albrecht  David Kleijn  Neal M. Williams  Matthias Tschumi  Brett R. Blaauw  Riccardo Bommarco  Alistair J. Campbell  Matteo Dainese  Francis A. Drummond  Martin H. Entling  Dominik Ganser  G. Arjen de Groot  Dave Goulson  Heather Grab  Hannah Hamilton  Felix Herzog  Rufus Isaacs  Katja Jacot  Philippe Jeanneret  Mattias Jonsson  Eva Knop  Claire Kremen  Douglas A. Landis  Gregory M. Loeb  Lorenzo Marini  Megan McKerchar  Lora Morandin  Sonja C. Pfister  Simon G. Potts  Maj Rundlf  Hillary Sardias  Amber Sciligo  Carsten Thies  Teja Tscharntke  Eric Venturini  Eve Veromann  Ines M.G. Vollhardt  Felix Wckers  Kimiora Ward  Andrew Wilby  Megan Woltz  Steve Wratten  Louis Sutter 《Ecology letters》2020,23(10):1488-1498
Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.  相似文献   
103.
The unique physicochemical properties of (2D) nanomaterials make them well‐suited for use in sustainable energy applications. Many of these materials can be further improved with vacancy engineering. This review details recent progress in the vacancy engineering of ultrathin 2D nanomaterials. For clarity, it mainly focuses on various ultrathin 2D materials in three categories: Xa&XaYb‐, MaXb‐, or MaXbYc‐structured materials. Recently developed vacancies in different types of ultrathin 2D materials, as well as their preparation and characterization, are described. Emphasis is placed on the potential electrochemical energy storage and conversion applications of these materials. This review considers the relationship between vacancy properties and material categories of various ultrathin 2D materials in terms of application requirements, preparation, and characterization techniques. The challenges and future outlook of this promising field are summarized.  相似文献   
104.
Crop residue exploitation for bioenergy can play an important role in climate change mitigation without jeopardizing food security, but it may be constrained by impacts on soil organic carbon (SOC) stocks, and market, logistic and conversion challenges. We explore opportunities to increase bioenergy potentials from residues while reducing environmental impacts, in line with sustainable intensification. Using the case study of North Rhine‐Westphalia in Germany, we employ a spatiotemporally explicit approach combined with stakeholder interviews. First, the interviews identify agronomic and environmental impacts due to the potential reduction in SOC as the most critical challenge associated with enhanced crop residue exploitation. Market and technological challenges and competition with other residue uses are also identified as significant barriers. Second, with the use of agroecosystem modelling and estimations of bioenergy potentials and greenhouse gas emissions till mid‐century, we evaluate the ability of agricultural management to tackle the identified agronomic and environmental challenges. Integrated site‐specific management based on (a) humus balancing, (b) optimized fertilization and (c) winter soil cover performs better than our reference scenario with respect to all investigated variables. At the regional level, we estimate (a) a 5% increase in technical residue potentials and displaced emissions from substituting fossil fuels by bioethanol, (b) an 8% decrease in SOC losses and associated emissions, (c) an 18% decrease in nitrous oxide emissions, (d) a 37% decrease in mineral fertilizer requirements and emissions from their production and (e) a 16% decrease in nitrate leaching. Results are spatially variable and, despite improvements induced by management, limited amounts of crop residues are exploitable for bioenergy in areas prone to SOC decline. In order to sustainably intensify crop residue exploitation for bioenergy and reconcile climate change mitigation with other sustainability objectives, such as those on soil and water quality, residue management needs to be designed in an integrated and site‐specific manner.  相似文献   
105.
The Amazon River, its huge basin, and the changes in biological processes that are rapidly occurring in this region are unquestionably of global significance. Hence, Global Change Biology is delighted to host a special thematic issue devoted to the Large‐scale Biosphere–Atmosphere Experiment in Amazônia (LBA), which is a multinational, interdisciplinary research program led by Brazil. The goal of LBA is no less modest than its subject: to understand how Amazônia functions as a regional entity in the Earth system and how these functions are changing as a result of ongoing changes in land use. This compilation of 26 papers resulting from LBA‐related research covers a broad range of topics: forest stocks of carbon (C) and nitrogen (N); fluxes of greenhouse gases and volatile organic compounds from vegetation, soils and wetlands; mapping and modeling land‐use change, fire risk, and soil properties; measuring changes caused by logging, pasturing and cultivating; and new research approaches in meteorology to estimate nocturnal fluxes of C from forests and pastures. Some important new synthesis can be derived from these and other studies. The aboveground biomass of intact Amazonian forests appears to be a sink for atmospheric carbon dioxide (CO2), while the wetlands and soils are a net source of atmospheric methane (CH4) and nitrous oxide (N2O), respectively. Land‐use change has, so far, had only a minor effect on basin‐wide emissions of CH4 and N2O, but the net effect of deforestation and reforestation appears to be a significant net release of CO2 to the atmosphere. The sum of the 100‐year global warming potentials (GWP) of these annual sources and sinks of CH4, N2O, and CO2 indicate that the Amazonian forest–river system currently may be nearly balanced in terms of the net GWP of these biogenic atmospheric gases. Of course, large uncertainties remain for these estimates, but the papers published here demonstrate tremendous progress, and also large remaining hurdles, in narrowing these uncertainties in our understanding of how Amazônia functions as a regional entity in the Earth system.  相似文献   
106.
Metrics are a prerequisite for the successful monitoring and management of progress toward goals. Within the context of sustainable development these “values” are stakeholder dependent with the interests of the individual, society, the environmental infrastructure and intergenerational liability differing significantly. These stakeholder priorities may also be mutually inconsistent or simultaneously unattainable. Therefore, a set of scale- and value-specific indicators will he required to represent the priorities of individuals, religious organizations, political and public interest groups, non-government organizations, firms and industry associations, as well as national and international institutions. Restricting the number of ecometrics, or creating aggregated sustainability indicators, risks disenfranchisement and ivalidation respectively. Over the past three decades a series ofmicroecometrics have been developed to account for the impact of human activity, technology or products over regional, national, and sub-continental scales. These include life cycle energy consumption, dematerialization, waste minimization, as well as design for environment and eco-efficiency indicators, the latter two combining technological or economic aspects respectively with environmental factors.Metrics which evaluate the impact of a service, or the utility provided by a product, are lacking. A series of global measures, or macroecometrics have also been defined and include the average annual temperature as well as atmospheric compositions and concentrations, sea level, and earth based resources such as topsoil quantities. The validity of microecometrics as measures of global phenomena can be established through life cycle impact assessments which evaluate the “system’s” response to effects of products or services throughout their life cycle. However, the link between microecometrics and macroecometrics, their validity as indicators of sustainability, the subjectivity of sustainable developmentper se as a value, and the relationship of metrics and sustainable development with family values has not extensively been addressed. This paper summarizes recently proposed ecometrics, calls for the recognition of the subjectivity of indicators, the distinction between ecometrics used for internal corporate reporting and external decision making, and the establishment of a representative multistakeholder debate.  相似文献   
107.
Using sweeping nets and pitfall traps, arthropods on the soil surface and on vegetation were periodically surveyed in two villages on the Jiang Han Plain from April to September 1994. Statistical analysis of the resulting data delineated groups of bioindicators on vegetation and on the grounds that represent components of formulas for evaluating environmental quality in agroecosystems. These groups are (1) Coccinellidae and Chrysopidae (seasonally migrating predators factor); (2) Braconidae and Chalcidoidea (parasitic insects factor); (3) Araneae and Mantodea on vegetation and Araneae, Carabidae, Opiliones and Nitidulidae on the ground (carnivorous arthropods factor); and (4) Formicidae, Isopoda, and Chilopoda (soil-dwelling arthropods factor). The following resource pools were identified for the different model arthropods: woodlots for Araneae and Mantodea; field margins for Chrysopidae and Coccinellidae; hedgerows for Braconidae and Chalcidoidea; and low-input cropfields on the floodplains for epigeic carnivorous arthropods. Comparison of these insect groups in different rural landscape units demonstrated the importance of a mosaic rural landscape, including woodlots, rationally designed field margins, and cropland, for creating an ecologically favorable agricultural environment.  相似文献   
108.
Allelopathic compounds are metabolites released from plants that might be beneficial or detrimental to the growth of receptor plants. These compounds are involved in the environmental complex of managed or natural ecosystems. Allelopathic compounds have been shown to play important roles in the determination of plant diversity, dominance, succession, and climax of natural vegetation and in the plant productivity of agroecosystems. The overuse of synthetic agrochemicals often causes environmental hazards, an imbalance of soil microorganisms, nutrient deficiency, and change of soil physicochemical properties, resulting in a decrease of crop productivity. The incorporation of allelopathic substances into agricultural management may reduce the use of synthetic herbicides, fungicides, and insecticides and lessen environmental deterioration. Scientists in many different habitats around the world have demonstrated the above examples previously. It is known that most volatile compounds, such as terpenoids, are released from plants in drought areas. In contrast, water-borne phytotoxins, such as phenolics, flavonoids, or alkaloids, are released from plants in humid zone areas. Both allelopathy and autointoxication play an important mechanism in regulating plant biodiversity and plant productivity. A unique case study of a pasture-forest intercropping system, which is particularly emphasized here, could be used as a model for forest management. After the deforestation of coniferous or hardwood forests, a pasture grass, kikuyu grass (Pennisetum clandestinum), was transplanted onto the land. The grass was quickly established within 6 months. Significant suppression of weed growth by the kikuyu grass was found; however, the growth of coniferous or hardwood plants was not suppressed but stimulated. This example as well as others described in this text clearly indicate that allelopathy plays a significant role in sustainable agriculture. Nevertheless, room for allelopathic research in the next century is available for biologists, biochemists, biotechnologists, and chemists. Future allelopathic research should focus on the following tasks: (1) a continuous survey of potential allelochemicals from natural vegetation or microorganisms, (2) the establishment of practical ways of using allelochemicals in the field, (3) to understand the mode of action of allelopathic chemicals in receptor organisms, (4) to understand the role of allelopathic chemicals in biodiversity and ecosystem function, (5) to explore advanced biotechnology for allocating allelopathic chemical genes in plants or microorganisms for biological control, and (6) to challenge the natural product chemists to develop a better methodology for isolating allelopathic compounds or their degraded compounds from the environment, particularly the soil environment.  相似文献   
109.
论可持续发展的历史观与生态观   总被引:4,自引:0,他引:4  
可持续发展是指既满足当代人需求,又不损害人类后代满足其自身需求的能力的发展[1];或者说是指在资源和环境所能承载的前提下,人口、经济、社会的协调、健康向前发展,即做到经济可持续、社会可持续和生态可持续。纵观可持续发展思想的产生与形成过程,可以看出它有着深刻的历史背景和生态背景。1 可持续发展思潮形成的历史背景文明是人类改造世界的物质和精神成果的总和,是人类处在开化状态和社会向前发展的集中体现[2]。人类结束生物进化进入文明演替至今,已经历了史前文明、农业文明、工业文明3个阶段,如今又开始了后工业…  相似文献   
110.
作者是澳大利亚著名昆虫学家,长期在东南亚农村工作,积累了宝贵经验。他在文中提出,害虫综合防治(IPM)的含义是综合害虫治理的方法以达到农业上的最大收益和持续发展,同时注意对环境有良好的影响。对小农户应提供确实可行的整套害虫治理方法,并开创他们能自行选择的机会;他们经过田间学校培训后可成为农作物管理专家,并对怎样防治害虫能作出有根据的抉择。与IPM有关的生物防治最近的发展包括:对害虫的准确鉴定、经生物工程处理和未处理过的生物杀虫药的应用、对转基因动植物的利用、及情报资料的收集。文章讨论了这些生物技术在东南亚地区水稻和蔬菜综合治理中的应用,以8及巴西大豆害虫和越南稻瘟病的治理,阐明通过农户、技术员和研究人员通力合作所获得的成绩对农业持续的发展起了主要的推动作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号